
kopal Library for Retrieval and Ingest

– documentation –

Stefan Funk, Kadir Karaca Koçer, Sabine Liess, Jens Ludwig, Matthias Neubauer

c© Project kopal,

German National Library /

Goettingen State and University Library

koLibRI v1.0 – July 2007

Contents

1 kopal Library of Retrieval and Ingest – an overview 4

1.1 Functionality . 4

1.2 Project scale . 5

1.3 Distribution . 6

2 Installation and configuration 7

2.1 Requirements . 7

2.2 Installation . 7

2.3 Configuration of koLibRI . 9

3 Using koLibRI for the ingest workflow 11

3.1 Overview over more ActionModules and ProcessStarters 13

3.2 Get started! – Information about the example configuration 19

4 Using koLibRI for retrieval 23

5 The Migration Manager 24

5.1 Description . 24

5.2 Design . 25

5.3 Usage . 26

5.4 Class Descriptions an Extensions . 28

6 The koLibRI database 30

6.1 Installation . 30

6.2 Design of the database schema . 32

7 Customized koLibRI extensions 34

7.1 The Structure of koLibRI . 34

7.2 Configuring classes . 37

7.3 Metadata formats . 39

8 Implementation of the DIAS administration and

search interfaces 40

9 koLibRI as a Web Service 43

9.1 Introduction . 43

9.2 Installation . 43

9.3 Configuration . 43

9.4 Starting up . 44

9.5 How Ingest works . 44

9.6 How Retrieval works . 44

9.7 Organisation of the cache . 46

9.8 Available operations . 48

9.9 Information for programmers . 49

10 Appendix 51

10.1 The use of JHOVE in koLibRI . 51

10.2 WSDL file of the koLibRI Web Service . 54

10.3 Direct usage of the interfaces of DIAS . 69

10.4 The TIFF Image Metadata Processor . 70

10.5 Errorcodes at System.exit . 70

10.6 Error handling und loglevel . 72

1 kopal Library of Retrieval and Ingest – an overview

koLibRI is a framework for the integration of a long-term archiving system, like the IBM

Digital Information Archiving System [1] (DIAS), into the infrastructure of an institution. In

particular, it organizes the creation and ingest of archival packages into DIAS and provides

functionalities to retrieve and manage these packages.

This document describes the installation and configuration of a fully functional koLibRI

system, as well as its basic internal design to allow individual developments and extensions.

A certain amount of basics about long-term archiving [7], as well as about the standards

OAIS [2], URN [3], METS [4], LMER [5] und IBM DIAS is essential for fully understanding

the system. The necessary knowledge is, however, freely available via the Internet.

koLibRI is being provided in full functionality and a stable state after the succesful

completion of the kopal project [6]. The terms of use and liability apply as stated on the

kopal website1.

1.1 Functionality

In short, koLibRI generates a XML file according to the METS schema out of the metadata,

provided with the object to archive or generated by JHOVE [8], bundles it into an archive

file together with the object (.zip or .tar) and delivers this Submission Archiving Package

(SIP) to the DIAS system.

From that point of view, koLibRI was developed to provide a full implemented long-term

archiving solution together with the IBM DIAS. However, koLibRI can also be used as an

independent software to create METS files or whole SIPs according to the Universal Object

Format [22], completely without the need of the DIAS system. XML metadata files or SIPs

generated in this way, can be used for data exchange between several institutions; a feature

which was one of the leading aspects in the development of the UOF. Because of its modular

design and its open specified interfaces, koLibRI can alternatively be adapted to another

archival system or metadata format with affordable effort.

1.1.1 Ingest

It has to be defined which working steps are necessary to create and ingest an archival

package. These steps can differ for different types of digital objects.

1http://kopal.langzeitarchivierung.de/index koLibRI.php.en

4

http://kopal.langzeitarchivierung.de/index_koLibRI.php.en

For instance, the sources of objects (CD-ROM within a local machine, document server in

the intranet, etc.) and their descriptive metadata (XML file attached to the object, OAI in-

terface of a catalog system, etc.) strongly vary for electronic theses, digitized books and even

within these object classes. koLibRI was designed modular, so that these different steps can

be integrated. It allows the notation of these steps within a XML file called policies.xml.

The working steps are referred to as steps, which are implemented by action modules.

Typical modules process tasks like the download of files for the archival package, the

validation of the files, extraction of technical metadata, generation of the metadata file that

belongs to the UOF and the ingest of the final archival package into DIAS. There is also the

possibility to scale these steps to different machines, as to create archival packages within

several departments, but to use a central instance for quality assurance, entries into catalog

systems and the final ingest.

1.1.2 koLibRI-Database

For many user scenarios, it is useful to harvest and store data about processed objects during

the ingest process. To do this, koLibRI provides database support, so that own identifiers,

Dublin Core metadata or some technical metadata for instance can be stored file based.

This way, the data is available also for functionalities outside of koLibRI, e.g. for statistics,

identifier resolving or an OAI interface.

1.1.3 Retrieval

The functionality of retrieving archive objects is usable via the Web Service (see chapter 9

on Web Service). On the other hand, one can use the command line tool DiasAccess, and

the according Java methods of the same class within own software respectively.

1.2 Project scale

koLibRI has been developed within the scale of project kopal – Co-operative Development

of a Long-Term Digital Information Archive [6] by the German National Library and the

Goettingen State and University Library for the use of the system kopal solution. Subject

of the 3-year project kopal (2004 - 2007) was the practical proving and implementation of a

cooperative developed and operated long-term archiving system for digital publications.

As partner, the German National Library [18], the Goettingen State and University

Library [19] and IBM Germany [20] have implemented a cooperative and reusable solution

5

for the long-term preservation of digital resources. The technical maintenance is done by the

Gesellschaft fuer wissenschaftliche Datenverarbeitung mbH Goettingen (GWDG) [21].

1.3 Distribution

The precompiled binaries and the source code of koLibRI can be downloaded from

http://kopal.langzeitarchivierung.de/kolibri

free of charge or registration. Please send an email to

kolibri@kopal.langzeitarchivierung.de

when facing any problems.

Everyone interested in the software is free to modify or extend it and can pass it on

to others. However, the licence agreements that are being provided by kopal have to be

acknowledged. The software libraries and service programs that have been developed of the

kopal project, and are only being used by koLibRI, partially apply to other licences which are

available in the corresponding license files. Any questions regarding these software libraries

are only to be addressed to the respective authors of the according software package.

6

http://kopal.langzeitarchivierung.de/kolibri
kolibri@kopal.langzeitarchivierung.de

2 Installation and configuration

2.1 Requirements

koLibRI has been implemented in Java only, that means it should be usable on any plat-

form that provides a Java Virtual Machine in version 1.5 (However, even alternating Java

environments are not always compatible. Problems with alternating XML parsers where

sporadically observed). The development team has tested koLibRI on various processor ar-

chitectures and operating systems2.

koLibRI is free software in the sense of the Free Software Foundation [9] It can likely be

ported to other platforms in favour. In such cases, the kopal team would be pleased to be

informed about any kind of customization.

2.2 Installation

The installation of the precompiled distribution consists of the following components:

1. The precompiled program package kolibri.jar,

2. the directory with linked software packages /lib, and

3. the example and main configuration files in the /config directory.

In addition there are several batch files for MS Windows and Unix to provide an easy

way of the invocation of the included software tools. These components simply have to be

unpacked from the packed archive file into a favoured directory. If one wishes to recompile

koLibRI from the source files by himself, the packed .java files simply have to be unpacked

and compiled – preferential with the included Ant script.

After kolibri.jar is available on the hard disk, the batch file workflowtool.bat (for

MS Windows), respectively its pendant for Unix, has to be customized with the help of a text

editor. Once all paths and parameters have been set correctly, the different functionalities

of the program are available by the invocation of the according batch files.

The important thing at this point is to know, which paths and parameters are appropri-

ate for the according system. In cases of uncertainness, the according system administrator

should be contacted. It is recommended – if available – to reserve 512 megabytes or more of

2different Linux distributions, Mac OS X 10.4 and MS Windows XP

7

#!/bin/sh

##
Copyright 2005-2007 by Project kopal
#
http://kopal.langzeitarchivierung.de/
#

...

...

Configuration constants:

KOLIBRI_HOME=/users/user/projects/kopal/kolibri # The koLibRI location
JAVA_HOME=/usr/java # Java JRE directory
JAVA=$JAVA_HOME/bin/java # Java interpreter
EXTRA_JARS=lib/clibwrapper_jiio.jar:

NOTE: Nothing below this line should be edited
##

CP=${KOLIBRI_HOME}/kolibri.jar:${EXTRA_JARS}

Retrieve a copy of all command line arguments to pass to the application.

ARGS=""
for ARG do

ARGS="$ARGS $ARG"
done

Set the CLASSPATH and invoke the Java loader.
${JAVA} -classpath $CP -Xmx512m de.langzeitarchivierung.kopal.WorkflowTool $ARGS

##

Figure 1: The file workflowtool

heap size through the parameters.

Listed below are the main parts of the workflowtool.bat file. They are followed by com-

ments to the lines that have to be customized:

– KOLIBRI HOME – the directory in which the kolibri.jar file is located.

– JAVA HOME – the directory of the local Java installation.

– JAVA – the directory within JAVA HOME, which contains the executable Java Virtual

Machine.

– EXTRA JARS – complete paths and filenames to optional software libraries to be linked,

8

which are to be separated by a semicolon (MS Windows) or a colon (Unix). In example,

this can be institution specific software extensions for koLibRI.

2.3 Configuration of koLibRI

To configure koLibRI, the files config.xml (an alternative file name or path can be used

through the command line parameter ”-c”) and the policy file policies.xml have to be cus-

tomized. The config file contains global and module/class specific configuration parameters.

Configuration values for individual working steps can be set within the policy file.

The most specific value has the highest priority, that means the Configurator first tries

to fnd a parameter for the actual step, then for the actual module or class and finally it uses

global configuration parameters.

The configuration file has a structure as follows (for the formal specification please see

the file config.xsd):

<config>

<common>

<property>

<field>logLevel</field>

<value>INFO</value>

<description>...</description>

</property>

</common>

<modules>

<class name="actionmodule.MetadataGenerator">

<property>

<field>acceptedUnknownFileFormats</field>

<value>.xms</value>

<value>.doc</value>

<description>...</description>

</property>

</class>

</modules>

</config>

The common block defines the global parameters, the modules block the module and class

specific ones. Each configuration parameter is embedded within property tags. The field

tag defines the name of the parameter (case sensitivity is not relevant) and the according

9

values are set within one ore more value tags. The repeatability of a value tag is depen-

dent of the according parameter, whose meaning is documented within the description

tags. The class tag bundles all configuration parameters for a specific module, where the

name attribute is stating the name of the according Java module (either by the full qualified

package name or by abandonment of the usual prefix de.langzeitarchivierung.kopal).

Setting configuration values for individual working steps of the policy file is done in the

following way (for the formal specification please see the file policies.xsd, for a description

of the policy file please see section 3 on page 11):

<step class="MetadataGenerator">

<config>

<property>

<field>showPdfPages</field>

<value>false</value>

</property>

</config>

...

</step>

If a config tag is present one hierarchical level below a step tag, all configuration pa-

rameters contained in the config tag are used for the specific class of the step tag, for

documentation please see example configuration files. It is suggested to use the provided

examples as a basis for individual configurations.

10

3 Using koLibRI for the ingest workflow

To use koLibRI for the ingest of archival packages it is essential to specify the working steps

in the configuration file policies.xml3. The formal syntax is defined in the example file

policies.xsd within the config directory, the functionality of the example workflows, to-

gether with the example configuration files, is explained in section 3.2 on page 19.

Workflows are seen as trees in the sense of the graph theory, that is processed in the

direction from the root to the leafs. Each node is a step, whose child nodes are only processed,

if the parent node was processed successfully. The child nodes are processed parallel if

applicable, this can be very useful for time consuming tasks (like burning a CD-ROM or the

transfer to another archive)4.

An example workflow would process the following six steps in a row:

1. Copy selective files to a process directory

(ActionModule FileCopyBase),

2. extract descriptive metadata for the files

(ActionModule MetadataExtractorDmd),

3. generate technical metadata for the files (ActionModule MetadataGenerator, please

see section 10.1 on page 51),

4. generate metadatafile mets.xml

(ActionModule MetsBuilder),

5. compress all files into an archival package

(ActionModule Zip), and finally

6. ingest the archival package into DIAS

(or another archive system)

(ActionModule SubmitDummySipToArchive).

Please have a look at the related policy file:

<policies>

<policy name="example">

<step class="FileCopyBase">

3Which steps are needed is also dependent of the individual archiving requirements. Each institution
has to declare these requirements for itself; the process of finding a long-term archiving policy can not be
replaced by a technical solution (please see partner project nestor [7] for further information).

4This functionality is not yet realized

11

<step class="MetadataExtractorDmd">

<step class="MetadataGenerator">

<config>

<property>

<field>showHtmlImages</field>

<value>true</value>

<description>...</description>

</property>

</config>

<step class="MetsBuilder">

<step class="Zip">

<step class="SubmitDummySipToArchive">

</step>

</step>

</step>

</step>

</step>

</step>

</policy>

</policies>

Besides the working steps itself, it has to be defined, how new working steps are be-

ing started and which initialization values they get. This is the meaning of the so called

ProcessStarters, which are set at the start of the program either through the command line

parameter -p, or in the configuration file through the parameter defaultProcessStarter.

For basic usage, there are the ProcessStarters MonitorHotfolderExample and Monitor-

HttpLocationExample, which generate archival packages from files and folders beneath a

given hotfolder or URL. A more special one would be a server (Server and ClientLoader-

ServerThread), that makes one machine listening to retrieve archival packages from another

machine for further processing. It is also possible to run multiple ProcessStarters at the same

time by setting more than one value in the configuration parameter defaultProcessStar-

ter.

Starting a WorkflowTool instance

The batch files, which are included within this release, are used to execute an instance of

the WorkflowTool after a correct installation. To do this, the batchfiles simply have to be

customized with the respective local configurations. Additionally, optional module packages,

developed by other institutions can be included and used through the batchfiles (see section

2 on page 7).

12

workflowtool -h explains the command line options:

usage: WorkflowTool

-c, --config-file The config file to use.

-s, --show-properties Prints the system properties and continues.

-p, --process-starter The process starter module which chooses items for

processing.

-h, --help Prints this dialog.

Optional to the execution of the batch file, a WorkflowTool instance can also be started

through command java -jar kolibri.jar [OPTIONS]

Because the access to DIAS is usually realized through an encrypted connection, the

parameter -Djavax.net.ssl.trustStore=KEYSTORE LOCATION will be necessary after the

installation of the certificate of the DIAS hosting partner with the Java keytool. The path to

the keystore file, as well as the path to the known hosts file, can be set in the configuration

file.

3.1 Overview over more ActionModules and ProcessStarters

3.1.1 ProcessStarter

Server The koLibRI instance is listening for network connections and starts a new thread

for each request, that executes the necessary actions. This ServerThread has to be

set in the configuratiopn file as serverClassName, for example ClientLoaderServer-

Thread (takes archival packages from other koLibRI instances).

Important configuration values:

– serverClassName

– defaultConnectionPort

MonitorHotfolderExample Example ProcessStarter that builds an archival package (Sub-

mission Information Package – SIP) for every subdirectory of a given hotfolder di-

rectory. It monitors the directory, stated as hotfolderDir and processes all existing

subfolders first. Then it processes all added subfolders. The names of the subfolders

are interpreted as persistent identifiers for the SIPs.

Important configuration values:

– hotfolderDir

13

– readDirectoriesOnly

– startingOffset

– checkingOffset

– addingOffset

MonitorHttpLocationExample Same as MonitorHotfolderExample, but files and directo-

ries can be retrieved by an URL. This URL is also monitored and added directories

are processed. Directory names are interpreted as persistent identifiers as before.

Important configuration values:

– urlToMonitor

– readDirectoriesOnly

– startingOffset

– checkingOffset

– addingOffset

3.1.2 ActionModule

AdaptHtmlPage Exchanges links in HTML files. This action module is used by the Mi-

grationManager to change filenames to those of migrated and most likely different

filesnames, e.g. to keep an HTML page and its linked images useable.

Important configuration values:

– htmlPageFilename

– replaceFulltextOnly

AddDataToDb Adds configurable information to the database, if useDatabase is set in the

configuration file.

Important configuration values:

– storeFileData

– storeFileDataTechMd

– storeDc

– storeIds

– storeCustomData

– customDataEelements

AlreadyIngestedChecker Using the XORed checksumme from the koLibRI database the

AlreadyIngestedChecker checks if a SIP already was ingested.

Important configuration values:

14

– waitUntilNextTry

– errorIfChecksumExists

AskDIASifIngested Tests via DIAS access, if a SIP with a certain external ID already

was ingested before.

CleanPathToContentFiles Deletes the files and folders in the temporary processing di-

rectory.

CleanUpFiles Deletes created ZIP files and METS files from the destination directory.

DiasIngestFeedback Uses the DIAS ticketing system to request the status of an SIP.

All data put in the koLibRI database for this SIP can be removed if an ingest was

unsuccessful. Use the config values below to configure what table entries to delete.

Important configuration values:

– removeFileOnError

– removeTechmdOnError

– removeDublincoreOnError

– removeIdentifierOnError

– removeVariousOnError

– removeDiasOnError

Executor Executor provides the functionality to invoke system based command line tools.

The static arguments have to be set in the configuration file.

Important configuration values:

– command

FileCopyBase Files and folders of the object are copied to a temporary processing direc-

tory, to work with these copies, without altering the original files. The ActionModul

can be extended by own modules, i.e. to change the names of the copied files or ignore

certain files for the archival package.

FileCopyHttpBase Copies files and folders over HTTP. This allows archiving files from a

webserver. For more, see FileCopyBase.

MetadataExtractorDmd Includes descriptive Metadata into the archival package. This

module has to be customized for individual needs. The given example only shows how

descriptive metadata is embedded into a SIP. The source of this metadata is dependant

of the structures of the individual institutions. Inherits from MetadataExtractorBase.

15

MetadataExtractorDigiprovmd Includes provenance metadata into the archival pack-

age. This module also has to be customized for individual needs. Inherits from

MetadataExtractorBase.

MetadataGenerator Generates technical metadata for all content files of the archival

package with the use of the JHOVE toolkit from the Harvard University Library (please

see section 10.1 on page 51 for further information).

Important configuration values:

– acceptedUnknownFileFormat

– showGifGlobalColorTable

– showPdfPages

– showPdfImages

– showPdfOutlines

– showPdfFonts

– showMixColorMap

– showTiffPhotoshopProperties

– showWaveAESAudioMetadata

– showHtmlLinks

– showHtmlImages

– showIso9660FileStructure

– jhoveIsVerbose

– errorIfSigmatchDiffers

MetsBuilder Creates a METS file for the archival package out of the gathered informa-

tions. Responsible for the creation is the class, stated in mdClassName. For kopal,

the implementation Uof.java of the interface MetadataFormat creates a METS file

according to the UOF of the kopal project.

MigrateFiles Used by the MigrationMagager to convert files in another – likewise newer

– file format.

Important configuration values:

– migrationToolExecutionCommand

– sourceFileName

– destFileName

PrepareMigration This module extends the UOF with the provenance metadata needed

for a migration.

Important configuration values:

16

– migrateMetadataRecordCreator

– provmdComments

– provmdPermission

– provmdCreator

– provmdPurpose

– provmdResult

– provmdSteps

SubmitDummySipToArchive Example module for demonstration purposes.

SubmitSipToClientLoader Submits a SIP to a client loader. This module can be used by

more than one asset builder at the same time, that send their archival packages to a

central WorkflowTool instance. Please see ”Informations about the example configu-

ration” for further information.

Important configuration values:

– clientLoaderServer

– clientLoaderPort

– submitPolicyName

– fileSubmitNotificationTime

SubmitSipToDias Transfers a SIP to the DIAS, used by kopal, and is the implementation

of the SIP specification [10] for ingests into kopal-DIAS, provided by IBM. Some of the

following configuration values are set in the common section of the main config file.

Important configuration values:

– cmUser

– cmPwd

– ingestPort

– ingestServer

– knownHostsFile

– preloadArea

TiffImageMetadataProcessor Validates all TIFF image files within the archival package

with the use of JHOVE first, see section 10.4, page 70.

Important configuration values:

– correctInvalidTiffHeaders

– verbose

17

– separateLogging

– separateLogfileDir

– jhoveConfigFile

– nonVerboseReportingTime

Unzip Un-zips a ZIP file into the given directory.

Important configuration values:

– tempDir

– sourceFile

– deleteZipOnExit

Utf8Controller With the help of this module, a created METS file, that is always UTF-8

encoded, can be checked for invalid UTF-8 characters and correct them. The source

of the used Utf8FilterInputStream is the utf8conditioner by Simeon Warner (simeon@

cs.cornell.edu), which was adapted to JAVA for the use in koLibRI.

Important configuration values:

– filename

– storeOriginalFile

– originalPostfix

XorFileChecksums Generates an XOR checksum from all existing file checksums and puts

it into the database. This XOR checksum can be used to check if an identical SIP has

already been ingested into the archive.

Important configuration values:

– errorIfAlreadyIngested

Zip Compresses the content files together with the METS file (mets.xml) into a compact

package.

Important configuration values:

– compressionLevel

Additional – partly very specialised – ActionModules and ProcessStarters are currently

available by request from the kopal project partner The German National Library (DNB)

and the Goettingen State and University Library (SUB).

18

simeon@cs.cornell.edu
simeon@cs.cornell.edu

3.2 Get started! – Information about the example configuration

There are three ways to use the example configuration files. The first is to configure a sin-

gle machine, so that it creates and ingests archival packages into an archival system itself –

a combination of SIP creation and SIP transfer with one instance of the WorkflowTool class.

There is also the possibility to configure multiple machines as so called AssetBuilder

and let them create archival packages resulting of different workflows and submit them to

another central machine. This central machine, the so called ClientLoader, receives all

these archival packages and ingests them into an archival system – a separation of the SIP

creation and the SIP transfer with one instance of the WorkflowTool as ClientLoader, and

multiple instances as AssetBuilders.

The third way is to use a database for bookkeeping over the ingested and created archival

packages. This has currently only been tested further with a single instance of the Work-

flowTool in standalone mode (see first point).

ATTENTION: The use of the database has not yet been tested for the parallel use

of multiple WorkflowTools as standalone AssetBuilders. Usage for multiple independent

instances of the Workflowtool in standalone mode is theoretically possible, but must be used

at one own’s risk. Usage of the database through a ClientLoader is not yet possible.

3.2.1 Standalone mode – Creation and ingest of archival packages with a single

instance of the WorkflowTool

The file example config standalone.xml is used for a single instance of the class Work-

flowTool. To execute this example, all that must be done, is to simply fill all tags enclosed

by stars (***) with the right values. These are four path values for the work and tempo-

rary directories, a URL or path value depending on the ProcessStarter, and maybe a path

for more logfiles. The description tags in the configuration file give a description of the

according values.

There is the choice out of two ProcessStarters at the moment. MonitorHotfolderEx-

ample takes all subfolders of the directory stated in hotfolderDir and further processes

all subfolders added later as an archival package to ingest (SIP), by adding the subfolders

to the ProcessQueue and processing them. MonitorHttpLocationExample does the same,

but checks files and subfolders of an URL stated in urlToMonitor. Of course the stated

directories must exist and contain files and folders, of which JHOVE can extract technical

19

metadata, to get meaningful and usable results. Any kind of file structure and files can be

used to test this module. See section 10.1 for further information.

The policy form the policy configuration file policies.xml that is used here, is exam-

ple standalone and executes the following ActionModules for each step. More informations

for each module can be obtained through the documentation of the Java classes or the

description tags in the configuration file (section 3.1, page 13).

– XorFileChecksums

– TiffImageMetadataProcessor

– MetadataExtractorDmd

– MetadataGenerator

– MetadataExtractorDigiprovmd

– MetsBuilder

– Utf8Controller

– Zip

– AlreadyIngestedChecker

– AddDataToDb

– SubmitDummySipToArchive

– CleanPathToContentFiles

– CleanUpFiles

The command to run the standalone example from a command line is as follows:

java -jar kolibri.jar -c config/example config standalone.xml

or better (if workflowtool.bat or the workflowtool script has been configured), to set

some more, maybe important parameters:

workflowtool -c config/example config standalone.xml

3.2.2 ClientLoader/AssetBuilder constellation – Separation of the creation and

ingest of archival packages with two or more instances of the Workflow-

Tool

The file example config clientloader.xml is used with a single instance of the class Work-

flowTool, the file example config assetBuilder.xml can be used for one or more instances

of the WorkflowTool each as AssetBuilder. For the communication between the instances,

20

some more configuration values are needed in the configuration files. The division of work

is described below.

The AssetBuilders can be started on different machines. This way, each machine can

process an individual workflow for the creation of archival packages. For individual work-

flows, also individual policies and configuration files have to be created. The AssetBuilders

in this example process the same steps as in the last example. Again, both ProcessStarters

stated above, can be used. The difference is, that the created SIPs are not directly transferred

to an archival system by each AssetBuilder himself, but are submitted to a central Client-

Loader first. To do this, the AssetBuilders use the ActionModule SubmitSipToClientLoader.

The policy is example assetBuilder.

A WorkflowTool instance with the ProcessStarter Server is started as ClientLoader. It

is then waiting for request on a port, defined by the field defaultConnectionPort in the

configuration file. When the server receives a request from an AssetBuilder, it starts a

ClientLoaderServerThread, configured by serverClassName. These Threads are listening

for the transfer of a SIP from the requesting AssetBuilder. Multiple SIPs from more than

one AssetBuilder can be received at the same time.

The policy here is example clientloader and contains two ActionModules:

SubmitDummySipToArchive Is the same ActionModule as in the above example. The

separation of AssetBuilders and ClientLoaders is suggestive if multiple AssetBuilders

shall be used, e.g. to process different workflows at the same time and create SIPs from

different sources. The ClientLoader gathers all archival packages from all AssetBuilders

centrally, and can also apply additional actions on them, e.g. burning CD-ROMs, re-

validating the METS files or inform other institutions about newly ingested SIPs.

CleanUpFiles After successfull ingest into the archive system, the archival packages, de-

livered by the AssetBuilders, are deleted. Commented out in the example for better

understanding.

The command to start the AssetBuilder/ClientLoader example on a command line is as

follows:

1. Starting the ClientLoader:

java -jar kolibri.jar -c config/example config clientloader.xml

21

2. Starting an AsserBuilder:

java -jar kolibri.jar -c config/example config assetbuilder.xml

3. Starting more AssetBuilders:

java -jar kolibri.jar -c config/example config assetbuilder.xml

or better (if workflowtool.bat or the workflowtool script has been configured), to set

some more, maybe important parameters:

1. Starting the ClientLoader:

workflowtool -c config/example config clientloader.xml

2. Starting an AsserBuilder:

workflowtool -c config/example config assetbuilder.xml

3. Starting more AsserBuilder (optionally with different configuration files):

workflowtool -c config/example config assetbuilder.xml

3.2.3 Standalone mode using the database – Creation and ingest of archival

packages with a single instance of the WorkflowTool using the database

First a database has to be created, according to the database documentation. If this was

successful, the following steps have to be done:

1. The WorkflowTool has to be configured as described in point 3.2.1.

2. The tag useDatabase of the configuration file has to be set to TRUE.

3. All database related values have to be filled with the right contents. These values are

marked by ### in the configuration file.

4. The WorkflowTool can now be started as described in point 3.2.1. The database is

now updated with useful information during the ingest process. See the database

documentation for further information about the use of the database.

If the database shall not be used, all that has to be done, is to set the value of useDatabase

to FALSE. The modules that use the database can remain in the policy file, because all data-

base modules check this parameter.

22

4 Using koLibRI for retrieval

The functionality of retrieving archive objects is usable via the Web Service (see chapter 9

on Web Service). On the other hand, one can use the command line tool DiasAccess, and

the according Java methods of the same class within own software respectively. For better

understanding of the DiasAccess command line options, knowledge of the DIP interface

specification [11] is important. An overview over these options can be found in section 10

on page 51.

23

5 The Migration Manager

5.1 Description

The MigrationManager is a koLibRI component which manages and executes migrations.

Objects which have to be migrated and those which should be result of the migration can

be described. Depending on those objects and your own requirements individual migration

workflows can be configured and different migration tools can be used.

The MigrationManager is a prototype and the current functionality is between the sim-

ple and complex scenarios described below. It is not sufficiently tested to be used for the

productive mass use and not all possibilities of DIAS, koLibRI and the UOF are imple-

mented. But for exemplary test operations and for conception of migration processes the

MigrationManager can be regarded as usable.

Migration is in itself a demanding process in the operations of an archive which can not

be isolated from the other processes and plannings of the archive operations and the available

infrastructure. A very simple scenario which can be implemented without problems with the

current version would be:

– The source file format TIFF and destination file format JPEG2000 are entered on the

command line,

– the matching objects are looked up on a set of local available METS files, and

– a simple migration workflow consisting of downloading the affected archival packages,

migration of files with a command line progamm and the new building and ingesting

of the archival packages is executed.

A complex scenario which can not be implemented because of missing supra institutional

infrastructure and know-how, but for which the basic architecture and interfaces for further

development are present:

– A koLibRI instance receives a message from a technology watch service or format

registry (like GDFR [26] oder PRONOM [27]) that an image format produced by

a specific programme and with specific technical properties has to be migrated into

another format,

– the objects and files with the matching properties are looked up in the DIAS data

management,

– because the affected files and objects are templates used by other objects, some objects

have to be migrated and adapted together,

24

– in some files the affected image formats are embedded,

– an external service registry is queried for an appropriate migration service (e.g. a grid

service for the conversion of big data sets), and

– the depending files and objects are adapted.

5.2 Design

The MigrationManager itself is a ProcessStarter which consists of several functional suben-

tities:

MigrationEventListener Fetches or receives messages about necessary migrations. This

happens currently with the command line where the characterisation of source and

destination objects is specified.

ObjectCharacter A characterisation of objects like e.g. source and destination file format

but also more complex properties like producing software or encoding. Because there

is no standard for the technical description of objects the kopal UOF is used as base

and single properties are defined by XPath expressions. An object characterisation

through CQL [25] for the DIAS data management is also possible.

ObjectCharacterTranslator Translates object characterisations into queries of a data

management system. For XPath object characterisations this is possible through

queries on METS files in the local file system, on the koLibRI database or the DIAS

datamanagement. Only the DIAS datamanagement is capable of CQL object charac-

terisations at the moment. It has to be kept in mind that not every data management

does support all kinds of queries. Complete in the sense of the kopal UOF is the

querying of local METS files.

ObjectDependencyAnalyser Analyses dependencies between objects and combines them.

At the moment the mptr (METS pointer) of METS files are analysed and all objects,

connected by METS pointers, are collected. The further processing of dependent object

is not used at the moment.

MigrationPolicyBuilder Configures migration processes with the help of templates. De-

pending on the template and the source and destination object characterisation the

appropriate migration service is chosen.

Besides the configuration possibilities in the common configuration file, two more config-

uration files are important for the MigrationManager:

25

migrationPolicyTemplates.xml Within this file (or in a file named according to the

common configuration) the policy templates according to which the migrations are

performed are defined .

migrationServiceRegistry.xml The available migration services are listed here as well

as defined how they can be used.

The most important action modules for the MigrationManager are:

PrepareMigration Adapts the UOF for an migration. This module has to be called very

early in the migration process or respectively before the file conversion.

MigrateFiles Executes external programmes for the migration and adapts the metadata

into the UOF accordingly. Migrations are only possible through execution of command

line programmes currently.

Executor Executes external programmes.

AdaptHtmlPage Adapts links and file references within a HTML page if the name of a file

has changend through migration.

5.3 Usage

To perform a migration, several settings have to be configured and the migration process

has to be triggered through a migration event.

5.3.1 Configuration

1. Which data mangement has to or can be used? The corresponding ObjCharac-

terTranslator class has to be specified in the configuration file as parameter Obj-

ChrTranslatorClassName for the class processstarter.migrationmanager.Migra-

tionEventScheduler. If direct access to DIAS is available DiasCQLObjCharacter-

Translator can be used for a CQL characterisation or DiasObjCharacterTranslator

can be used as XPath characterisation. Alternatively FileObjCharacterTranslator is

usable for locally available METS files or DbObjCharacterTranslator for the koLibRI

database.

2. For FileObjCharacterTranslator the MetsFilesDir in which the directories or sub

directories with METS files are stored has to be specified.

26

3. For the class processstarter.migrationmanager.MigrationPolicyBuilder the mi-

grationServicesFileName and migrationPolicyTemplatesFileName have to be gi-

ven as paths to the configuration files which define available migration services and

workflows.

4. The usable migration services have to be defined in the configuration file named

migrationServicesFileName. Descriptions and examples of the configuration can

be found in the file config/example migrationServiceRegistry.xml. Two aspects

are essential: It has to be described through which action module and with which pa-

rameters a service can be called. It also has to be defined which properties the service

has got, so that it can be chosen for a specific migration. This is possible by name,

by classifications or by source and destination object characterisations using XPath

expressions (e.g. source and destination file format).

5. The templates for migration workflows have to be defined in the configuration file given

as migrationPolicyTemplatesFileName. Descriptions and examples of the configu-

ration can be found in the file config/example migrationPolicyTemplates.xml. It

is also essential here, that application criteria of a migration template are defined.

The criteria are also expressed as XPath object characterisations. After that follows

the definition of the policy parts (policyFragments) to use. Fixed policies of the

policies.xml (e.g. for the invariant parts of the ingest process) or criteria for choos-

ing a migration service listed in the service registry are listed in order of execution.

5.3.2 Executing the Migration

If all necessary configurations are done, the migration manager can be started by invoking

koLibRI with the class MigrationEventScheduler. Two parameters are expected if only

a source and destination format shall be used. This is done by providing the according

DIAS format IDs. If four parameters are provided, the first pair is interpreted as XPATH

expression and its expected return value for the source object characterisation. The second

pair respectively for the destination object characterisation. An object characterisation can

be done in longer form by

/mets/amdSec/techMD/mdWrap/xmldata/format/text()

(namespaces are left out in this example – due to better readability – but however have

to be used) or in a more practicable form by

//*[name()=’lmerFile:format’]

27

As a result, GIF (for example) can be defined as

urn:diasid:fty:kopal:0200507050000000000005

All objects containing GIF files are selected by this.

5.4 Class Descriptions an Extensions

– MigrationEventScheduler

Implements the interface ProcessStarter, initialises all further components with help

of the configuration and manages the main process.

– MigrationEventListener

Interface for classes that receive events, that require a test for the need of a migration.

– CommandLineMigrationEventListener

Implements the interface MigrationEventListener. Interprets commandline argu-

ments as events.

– ObjCharacter

Object characterisation through XPATH expressions. Enables the usage of the File-

ObjCharacterTranslator, DbObjCharacterTranslator and the DiasObjCharacter-

Translator.

– CQLObjCharacter

Object characterisation through CQL expressions for the DIAS data management.

Requeires the usage of the DiasCQLObjCharacterTranslator.

– ObjCharacterTranslator

Interface for the translation between object characterisations into queries of according

data managements.

– FileObjCharacterTranslator

Queries as quasi-data-management single or multiple METS files. This also qualifies

it for the mapping of XPATH queries into queries of other data management systems.

This can be done by querying METS files with the FileObjCharacterTranslator

that contain the fieldnames of the according data management instead of the regular

values of an archive object.

– DbObjCharacterTranslator

Queries the koLibRI database as data management, if the objects characterised through

28

XPATH exspressions are present. For the mapping it uses the class FileObjCharac-

terTranslator and the file MapUofToDB.xml.

– DiasObjCharacterTranslator

Queries the DIAS data management, if the objects characterised through XPATH exs-

pressions are present. For the mapping it uses the class FileObjCharacterTranslator

and the file MapUofToDIAS.xml.

– DiasCQLObjCharacterTranslator

Queries the DIAS data management for objects characterised through CQLObjChar-

acter.

– ObjectDependencyAnalysator

Analyses dependencies between objects and bundles them. Currently, only objects

linked through METS pointers are analysed.

– MigrationPolicyBuilder

Builds and configures migration policies with the help of the classes MigrationPo-

licyTemplateStore and MigrationServiceRegistry for given objects and object

characterisations.

– MigrationPolicyTemplateStore

Class that delivers the migration templates for queries on basis of the according con-

figuration file.

– MigrationServiceRegistry

Class that delivers descriptions and parameters for chosen migration services on basis

of the according configuration file.

29

6 The koLibRI database

koLibRI uses the functionality of Hibernate [12] for all database access to be indepen-

dent of one certain database system. To use another system instead of MySQL, just

change the database system and also the values hibernateConnectionDriver class and

hibernateDialect stated in the main config file. For further information please consult the

Hibernate documentation.

Current limitations

– Parallel database access from different machines has not been sufficiently tested yet.

– The koLibRI database uses foreign keys, transactions and auto-incremental function-

alities, which limits the choice of the table engine to InnoDB when using MySQL.

6.1 Installation

Required software/Jars

The class path has to include (all needed packages are located in the /lib directory):

– db-beans.jar

– hibernate3.jar, included are packages required by Hibernate

– a jar of the database driver for MySql, e.g. mysql-connector-java-5.0.6-bin.jar

Installation of a database

The koLibRI database was tested with a mySQL database in version 5.0 and the InnoDB

table engine, contained in this version. With mySQL Administrator and mySQL Query

Browser there are easy to use and free managing tools available, that can do many configu-

ration and query tasks. Please read the according installation guides for all databases.

Creation of a database schema

The database schema for mySQL can be created with help of the SQL script createDB.sql

(under config). kolibriDbTest is used as default database name, this can customized by

search and replace functionalities in the script. For executing the script, either the Query

Browser can be used, or you can connect through command line by

mysql -u [USER] -h [HOST] -p

30

and execute

source [PATH]/createDB.sql

To use the database, it is important to fill the tables owner and server with at least

one entry each, which then have to be set in the configuration file as defaultOwner and

defaultServer. A test owner and server already are put in if you use the createDB script.

For other databases, a specific version of the createDB script has to be created.

Configuring the database

A database user and password for koLibRI must be created, that is allowed to access the

database with full rights (except DROP) from all machines running koLibRI. This can be

done under User Administration in the mySQL Administrator or using the command line.

Firewall settings do also have to be considered for remote access.

Configuring koLibRI for the database

For the use of the database, koLibRI has to be configured at various points. In addition to the

setting if the database is even used (and not only one ore more log files), there also have to be

set class specific values for util.db.HibernateUtil in the configuration file (see config file).

Besides that, the moment and type of the stored data has to be declared for the according

policies. This is done by addition of the ActionModule actionmodule.sub.AddDataToDb.

The following options are available:

– storeFileData

fills tables file and fileformat for each file in the metadata class.

– storeFileDataTechMd

fills table techmd for each file in the metadata class.

– storeDc

stores all Dublin Core metadata of the metadata class in table dublincore.

– storeIds

stores all entries in ProcessData.customIds in table identifier.

– storeCustomData

stores some entries in ProcessData.customData in table various.

– customDataEelements

states the elements in ProcessData.customData that shall be stored.

31

The ActionModules actionmodule.AlreadyIngestedChecker (before ingest) and ac-

tionmodule.DiasIngestFeedback (after ingest) can be used to add entries into the dias

table. These do some checking and only ingest the packages, or respectively add data to

the database, if these checks were successful. If you are using the three modules as in the

example policies, you can first add the data to the database, and then ingest the SIP. If the

ingest was not a success, you can configure the data to be deleted afterwards from the data-

base. DiasIngest is not being used in the example files. It can only be used to document

the functionality, as direct access to DIAS is required for its functionality.

All parameters needed for the proper configuration can be looked up in the config file

config.xml.

6.2 Design of the database schema

The input table contains files, that koLibRI received at ”‘first contact”’ with the source

material: Who is the owner of the object (reference to owner), where does the request

or files come from (referende to server) and when (column startdate, given in milliseconds

since 1970, see java.lang.System.currentTimeMillis()). If there are files present in the

ProcessData object even before the execution of the policy (that is after the ProcessStarter),

an XORed SHA-1 checksum of all files is stored. In addition, the object can have multiple

files, Dublin Core metadata, identifier or extra information (references to file, dublincore,

identifier or various on the input entry).

Warnings and errors may appear while processing the policy. Such events are listed in

table event and refer to the input entry, that the problem is related to. There are references

to the modulestatus and the description of the error. In addition, the time of the event

(eventdate) and the module name (module) are being logged. There is also the possibility

for a reference to the file that was responsible for the event.

Finally, the archival package gets successfully ingested into DIAS, and an entry into dias

is made. Next to the external and internal DIAS IDs and the time if the ingest, the internal

ID of the parent object is also logged for a migration. If the files were changed since their

entry to the input table, the altered XOR SHA-1 checksum of all files is stored here. The

deleted -flag is used to also be able to log deletions.

32

Figure 2: The koLibRI database schema

33

7 Customized koLibRI extensions

For further extensions and customizations, the interfaces ActionModule and ProcessStarter

become more interesting in particular. A certain familiarity with the structure of koLibRI

and the classes of the workflow framework de.langzeitarchivierung.kopal is, however,

necessary. At this point, a functional overview shall be provided. Please consult the javadoc

API documentation for more detailed information.

7.1 The Structure of koLibRI

The package structure of koLibRI is lying within de.langzeitarchivierung.kopal. This

package contains the central classes of the workflow framework. Underneath lie the following

packages. It is possible to create subpackages for institution specific extentions.

– actionmodule

Contains the ActionModule interface and its implementing classes.

– administration

Contains all classes implementing the search and administration interface of DIAS, see

sectiob 8, page 40.

– formats

Contains the interface MetadataFormat in its implementing class Uof for the Universal

Object Format of the kopal project.

– ingest

Classes for the ingest into DIAS.

– jhove

Additional classes for the JSTOR/Harvard Object Validation Environment, imple-

mented by the DNB and SUB.

– processstarter

Contains the ProcessStarter interface and its implementing classes.

– retrieval

Classes for the access to assets within DIAS.

– ui

Classes for user interfaces and event handling.

34

– util

Miscellaneous helper classes, e.g. methods for file handling, HTML- and HTTP-access,

the TiffIMP, etc.

– ws

The koLibRI Web Service, please see section 9.

The workflow framework de.langzeitarchivierung.kopal is consisting of eight classes

at the moment:

– Policy

Manages a workflow and builds it from ist XML representation.

– PolicyIterator

Iterates over the working steps of a workflow tree.

– ProcessData

Contains the central information of an asset: Name of the process (e.g. the assets

URN), policy, metadata, file list. The run method contains the logic for processing the

policy.

– ProcessQueue

A queue of all ProcessData objects to be processed.

– ProcessThreadPool

A ThreadPool, that processes ProcessStarter and ProcessData objects.

– Status

Contains status value and description for the actual state of the ActionModule. The

processing of the workflow is controlled by the status values.

– Step

Single working step within the workflow of an asset. Contains – among others –

functions to load and start action modules and to set their status values.

– WorkflowTool

Provides the command-line interface, starts the process starters and is working off the

processes. Working steps of a process are only processed if its value is Status.TODO

and its predecessor ended with the status Status.DONE.

35

Figure 3: Das Klassendiagramm koLibRI

7.1.1 ProcessStarter

For each new SIP, the ProcessStarter has to process the following actions:

1. Create a new ProcessData object,

2. initialize start values of the metadata if necessary (if ActionModules need those for

further processing), and

3. add the ProcessData object to the process queue (ProcessQueue.addElement()).

As long as at least one ProcessStarter is running, or the ProcessQueue still contains

elements respectively, koLibRI does not end, and instead waits for new processes or the end

of the actual processed one.

36

7.1.2 ActionModules

An ActionModul has to

1. set its status value to Status.RUNNING upon invocation, and

2. set ist status value to Status.DONE, when it was finished successfully.

An ActionModule should . . .

– . . . set its status value to Status.ERROR if an error occurs. The error message will be

logged seperately and modules with this status are not processed again. It is not equal

with the throwing of a Java-Exception, that means the module is not interrupted in

its processing and could, for example, retry the erroneous action and reset its status

at a success. A usual procedure would be the setting of Status.ERROR on a timeout,

directly followed by the Status.TODO. The module would then return temporarily to

the workflow framework. This way, the error will be logged and the processing will be

retried later.

– . . . use the staus value Status.WARNING, if an event appears, that should be logged as

warning (also in the database), but not lead to the abortion of the modules.

An ActionModule can . . .

– . . . especially work with and update the metadata and files of the ProcessData object.

– . . . store customData in the HashMap of the ProcessData object for other working

steps, which has no place in the structure behind UOF.

– . . . access the configuration data.

7.2 Configuring classes

The configuration of classes is done through the class Configurator. It gets initialized with

the help of a XML file by the method setConfigDocument() and does then set the required

configuration values of classes and objects, especially ActionModules and ProcessStarters,

over various overridden configure methods. This is possible, because the classes and objects

to configure are providing setter methods according to the JavaBeans specification.

37

Figure 4: Klassendiagramm ActionModules

38

If an ActionModule requires the value useDatabase from the configuration file for in-

stance, it just provides a setUseDatabase method, that is called with the according para-

meter by the Configurator while execution of the program (see also section 2).

Also possible ist the transfer of configuration values between objects and classes through

getter and setter methods. Please see the API documentation for more details.

7.3 Metadata formats

The metadata specific functionalities and object structures are mostly concentrated in the

formats package. The interface MetadataFormat declares the basic functionalities that are

required for processing. These are not always specific enough to provide full independency

of a concrete metadata format like the UOF.

In the current version of koLibRI, this in particular is valid for mapping the metadata for

the database by the class MappToHib, as by the classes PrepareMigration and MigrateFiles

to handle migration scenarios.

For the implementation of the interface MetadataFormat, a Java-XML-Binding through

XML-Beans [23] was used. The XML schema, according to the UOF, was transferred to

Java classes by the XML-Beans scomp compiler. This allows the structured and consistent

usage of the schema in Java. In particular, it provides functionalities for writing, reading

and validating of according XML files. To integrate individual schemas or metadata formats,

according Java classes can be analogous generated through the XML-Beans scomp compiler.

The main work for customization is then primary the implementation of the interface Meta-

dataFormat and additional helper methods, customization of some ActionModules and of

the class MappToHib, if the database is used.

39

8 Implementation of the DIAS administration and

search interfaces

In koLibRI 1.0, classes and interfaces have been added to allow and support the usage of the

administration and search interfaces, that were implemented by IBM. To accomplish that,

there are methods to generate the according HTTP requests for DIAS, as well as methods

and data classes which enable the interpretation and further usage of the XML responses of

DIAS.

All classes and interfaces that are required to do that are located within the subpackage

administration. Its central class is DiasAdmin.java. All methods to formulate queries for

DIAS and parse its XML responses are concentrated within this class.

DIAS-Core seperates between two interfaces: On the one hand, there is the administra-

tion interface, which provides a delete function for objects, various administrative functions

for XML Schemas and the list of common filetypes, a consistency check for ingested objects

and a function to list all modified objects of a certain timeframe. On the other hand, there

is the search interface, which supports queries and responses according to the SRU standard.

The DiasAdmin class combines the functionalities of both interfaces, in detail:

– Addition of a new file type to the list of common filetypes in DIAS

– Modification of an entry in the list of common filetypes in DIAS

– Deletion of an AIP (Data of an object for an internal DIAS ID, database entry within

dias is however not deleted)

– Deletion of an asset (Complete object for an internal DIAS ID. Deletion, however, is

not possible, if the object has migrated children)

– Consistency check for an ingested object

– Addition of a new XML schema for the use within the METS metadata

– Request of a certain XML schema

– Request of the list of supported XML schemas

– Request of a list of objects that were modified within a certain timeframe

– Submition of a formulated CQL query to the SRU server of DIAS

– Preparation of an individual SRU searchRetrieve request for the DIAS server

– Preparation of an individual SRU explain request for the DIAS server

– Parsing of the response from the DIAS administration interface and optional transfor-

mation of the data into defined data classes

40

– Parsing of the SRU response from the DIAS search interface and optional transforma-

tion of the data into defined data classes

To use the functionality of this class, there simply has to be added a part for it within

the global configuration file. Find a short description of each parameter in the following:

<class name="administration.DiasAdmin">

<field>useHttps</field>

Specifies wether or not the connection shall be assembled through secure HTTPS.

<field>adminServer</field>

The adress of the DIAS administration server

<field>adminPort</field>

The port of the DIAS administration server

<field>adminUser</field>

The username for administrative tasks

<field>adminPwd</field>

The administration password

<field>keyStoreFile</field>

Keystore file for a secure connection to the DIAS administration server

<field>sruMaximumRecords</field>

(Optional) Specifies the maximum number of records to be returned in a single

response message

<field>sruResultSetTTL</field>

(Optional) Specifies the number of seconds that a result set should be

mantained before it will be deleted by the server.

<field>sruSortKeys</field>

(Optional) Sorting keys for the SRU server to apply.

<field>sruStartRecord</field>

(Optional) Specifies the first record of the result set that should be

returned in the response message

<field>sruVersion</field>

(Optional) The version of the SRU server. The default value is "1.1"

<field>sruX_additionalDataElements</field>

(Optional) As many DIAS Standard or Custom Data Elements may be repeated

as needed, seperated by commas. These Data Elements will also be part of

the SRU response for each record.

<field>sruX_listAffectedContentFiles</field>

(Optional) Including this parameter indicates that a list of FileIDs of all

affected content files (files that meet the search criteria) must be

included in the response record.

</class>

DiasAdmin can the be configured through the Configurator. Depending on the scope

of use, the class can be used within an action module or another java class. The develop-

ment of a comfortable administration tool with a graphical user interface is of course also

41

imaginable. At the moment, the class specifically is in use to support the prototype of the

migration manager. It is used within the classes DiasCQLObjCharacterTranslator.java

and DiasCQLObjCharacterTranslator.java which provide the ability to search objects

that have to be migrated over certain search criteria. For further information on that, please

see the according part of this documentartion for the Migration Manager.

The object-character classes DiasCQLObjCharacterTranslator and DiasObjCharac-

terTranslator are responsible for the request of object to migrate through the SRU in-

terface of DIAS.

DiasCQLObjCharacterTranslator is using a predefined and complete CQL query, which

is boxed into an SRU request and then passed on to the DIAS system. This allows very

complex requests. For a definition of possible queries, please consider the official specification

of the Administration and Search interfaces of DIAS-Core.

DiasObjCharacterTranslator is using an search-definition-object of type ObjCharacter

to define the criteria to search. This enables parallel search within multiple datasources, the

kopal database and DIAS itself for example. The mapping file MapUofToDiasData.xml,

found within the /config folder of the release, is used for the translation between the data

elements within the UOF-METS file and the data elements of the DIAS-internal database.

This file can be easily extended any time.

42

9 koLibRI as a Web Service

9.1 Introduction

The ability to act as a web service is one of the main enhancements of version 1.0 against the

previous version 0.7. As a web service, koLibRI does not have to be called on the command

line to work as a batch process. It is started in a servlet container by the web administrator

and runs uninterruptedly listening to predefined port for new requests.

Each request is a SOAP [13] message containing besides the user name, password and

institution all the parameters needed to process this request. Java class WebServiceServer

gets the message and calls the appropriate method in one of the middle layer classes In-

gestLayer, AccessLayer, WSUtils.

All the services return ResponseElemDocument containing mainly a status code, human

readable text for that code, DIAS internal ID of this digital object (where needed), time

to wait (if DIAS busy), link to the requested file (if there is file to download), extra info

string (if necessary), error Message (if any occured) and a custom XML field if the answer

contains complex data. So the client can analyse the results of the request after sending

each message.

9.2 Installation

Installation of koLibRI as a web service is very simple. Just unpack the provided ZIP archive

in the Axis2 directory /WEB-INF/services and start Tomcat.

Tree files are all you need: kolibri web services.aar contains all the necessary pro-

gram code and libraries to run the web service. The other ones are the configuration and

policy files in XML format. They are the same configuration and policy files described in

previous chapters. For a real productive environment to ingest, there must be another file

containing cryptographic certificates.

Installation is so simple if you already have a running Axis2 [14]. If not, you have to

install Axi2 first. koLibRI is tested with Axis2 version 1.2. Although Axis2 has its own web

server and therefore can run without another web server, it is recommended to run it under

a real server. koLibRI is tested with Tomcat version 5.5.23 [15].

9.3 Configuration

Operating system, Java SDK, Tomcat and Axis2 should be configured as explained in their

corresponding documentation. All koLibRI configuration is done in its own configuration

file as described in previous chapters.

43

9.4 Starting up

Run Tomcat with the help of startup script under $CATALINA HOME/bin directory. Test the

functionality of Tomcat and Axis2 by calling their test pages. Use setParameters method

to set the actual parameters if necessary. You can use TestWebServices class as a simple

example or write your own code which calls WebServiceClient.

Now you are ready to start koLibRI web service. Call initCache to initialize the cache

– please keep in mind that web service will not function without initializing the cache. After

initializing the cache allow Ingest and/or Retrieval by calling allowIngestRequests and/or

allowRetrievalRequests respectively. If no error message returned is, web service is ready

for productive work.

Please note that the DIAS installation in GWDG checks the IP address to determine

if you are allowed to connect DIAS. So don’t be suprised that all your connection requests

are refused and you get just errors and exceptions. Use koLibRI to generate SIPs in UOF

format but do not try to upload it to DIAS.

9.5 How Ingest works

As seen in WSDL file, ingest service needs a policy describing how to handle that digital

document and one to six metadata blocks of type customXMLType. The first one is mandatory

and contains – among others – the must-have information Persistent Identifier and location

of the files belonging to this document. More information like label, checksums, etc. would

be better especially for checking the transfer errors but are not mandatory at the moment.

customXMLType can theoretically transfer any valid XML. This version focuses on LMER

simply because the UOF also uses LMER.

The other five optional metadata blocks are for descriptive metadata in different for-

mats. They will be copied unmodified into METS DescMd section. According to DIAS

documentation, if descriptive metadata exist the first one must be in Dublin Core [16].

In this first version of web service ingest is not fully implemented. To generate complete

SIPs please use the standalone koLibRI.

9.6 How Retrieval works

Sequence diagramm 5 shows the mode of operation of retrieval in time. Typically users

search relevant information in library database – which is not a part of koLibRI – and have

a list of documents as search result. If they think a specific document in this result list is

the right one, they choose this document.

44

Figure 5: Sequence diagramm of retrieval including external user interface

45

In case this document is an electronic one, the user interface sends the URN of the

document to koLibRI and requests the metadata. Web service requests from DIAS the full

metadata for that URN. DIAS responds with a link to the zipped mets.xml of that document

and its internal DIAS id. Web service generates a unique directory path using this unique

internal id and checks there if mets.zip is already downloaded. If yes it saves time and

resources and sends a link to the saved copy and does not download it again.

The user interface extracts the mets.xml, processes it and prepares the user with a table

of contents for that digital document. User chooses a specific file from the list. The user

interface sends the DIAS internal id and file name to web service. Web service looks in its

cache and decides if it must request the file from DIAS or if the file is ready in cache.

9.7 Organisation of the cache

Web service uses a directory to save the downloaded files and metadata. This directory is

called cache because of its positive side effect that if web service determines that a digital ob-

ject already has been downloaded a short time ago, this document needs not to be requested

and downloaded from DIAS once more. Especially for tape access in DIAS or downloading

large files this cache speeds up things treamendously and at the same time reduces the load

on DIAS-System.

Actually the cache is not one single directory but a big tree of directories (see figure 6)

organised in tree layers and named with digits 0. . . 9. It makes use of the algorithm that

the DIAS uses to generate its unique internal id’s to determine the location of a file. DIAS

genarates for each version of each digital document an unique number in form

[prefix]:YYYYYMMDDhhmmssSSSnnnn

where

– YYYYY stands for year (02007 for this year)

– MM stands for month (01. . . 12)

– DD stands for day (01. . . 31)

– hh stands for hour (00. . . 23)

– mm stands for minutes (00. . . 59)

– ss stands for seconds (00. . . 59)

– SSS stands for milliseconds (000. . . 999)

– nnnn stands for continious number if more than one assets are ingested in the same

millisecond.

46

Figure 6: Organisation of the directory structure in cache

47

Web service takes this id and generates a unique path for that asset so its anytime possible

to look in the directory tree to see if that document in that version has been already down-

loaded. The administrator shall control storage media often to be sure that it is not full. Web

service has no automatism to delete the old entries. It offers the eraseOldCacheEntries

message to be called if necessary.

A more intelligent cache organisation is possible but would be much more complex with-

out a significant win.

9.8 Available operations

Web service offers many operations:

– getFileFormatList

– reloadFileFormatList

– ingestDocument

– ingestSIP

– blockNewIngestRequests

– allowIngestRequests

– getIngestStatistics

– resetIngestStatistics

– getMETS

– getFile

– getDIP

– getDIPExternal

– getModifiedSince

– getHistory

– blockNewRetrievalRequests

– allowRetrievalRequests

– getRetrievalStatistics

– resetRetrievalStatistics

– initCache

– eraseOldCacheEntries

– deleteCache

– setParameters

48

– changePassword

All needed detailed information is in JavaDoc. So it will not be repeated here. Please note

that some of those operations are planned for the next release. So they are not implemented

yet but their skeleton is ready. Therefore those operations just return

598 Sorry. This service is not implemented at the moment.

without causing an error.

9.9 Information for programmers

Here is a short summary for programmers. For detailed information please read the JavaDoc

and see the source code.

9.9.1 WSDL

Web service in koLibRI is implemented following the contract first method. That means

first all the types, messages, ports and bindings are defined in Web Services Description

Language [17]. Those definitions of the WSDL file you can find in section 10.2 on page 54.

9.9.2 The generated Java package

Using those definitions, in WSDL file the needed java classes are generated with the help

of Axis2 code generator plugin for Eclipse. There is also a command line version of code

generator in Axis2 distribution. This machine generated code is for humans not easy to

understand and therefore not in CVS. Instead in koLibRI just the compiled jar file is used

and distributed. If you are interested in those classes you can generate them using the same

wsdl2java tool and WSDL file.

9.9.3 The Server

On the server side, the java class WebServiceServer which implements KolibriWebSer-

viceSkeletonInterface from generated jar accepts the SOAP messages and extracts the

needed parameters to call the appropriate method in one of the middle layer classes Ingest-

Layer, AccessLayer, WSUtils.

49

9.9.4 The Client

On the client side, the java class WebServiceClient which creates a new instance of Ko-

libriWebServiceStub from generated jar takes the needed parameters and constructs the

SOAP messages. It is designed as a helper class to make the communication on client side

easier by accepting java data types instead of complex XML constructs.

9.9.5 Test Class

TestWebServices is on one side a simple example which demonstrates the usage of Web-

ServiceClient and the communication with web service, on the other side it was necessary

to test the functionality of WebServiceServer. It is not for production enviroments. You

should implement similar calls to WebServiceServer (with or without using WebService-

Client) in your own system.

50

10 Appendix

10.1 The use of JHOVE in koLibRI

For the extraction of technical metadata, koLibRI uses the JSTOR/Harvard Object Valida-

tion Environment [8] (in short: JHOVE) version 1.1f (release of 01-08-2007) with some bug-

fixes which will be also contained in the upcoming maintenance release. JHOVE is used fully

automatic by the ActionModule MetadataGenerator and its internal class KopalHandler,

which works as an JHOVE OutputHandler. This handler enables the direct access to the cre-

ated metadata within the program. MetadataGenerator is a customization of the JhoveBase

class, which was matched and extended according to the given requirements.

JHOVE provides a very open module concept, that shall guarantee the support for fu-

ture file formats. So in principal, JHOVE can create technical metadata for virtually any

file format, preconditioned that an applying JHOVE module exists for it.

The used version of JHOVE supports the following file formats:

– AIFF-hul: Audio Interchange File Format

– AIFF 1.3

– AIFF-C

– ASCII-hul: ASCII-encoded text

– ANSI X3.4-1986

– ECMA-6

– ISO 646:1991

– BYTESTREAM: Arbitrary bytestreams (always well-formed and valid)

– GIF-hul: Graphics Exchange Format (GIF)

– GIF 87a

– GIF 89a

– HTML-hul: Hypertext Markup Language (HTML)

– HTML 3.2

– HTML 4.0

– HTML 4.01

– XHTML 1.0 and 1.1

51

– JPEG-hul: Joint Photographic Experts Group (JPEG) raster images

– JPEG (ISO/IEC 10918-1:1994)

– JPEG File Interchange Format (JFIF) 1.2

– Exif 2.0, 2.1 (JEIDA-49-1998), and 2.2 (JEITA CP-3451)

– Still Picture Interchange File Format (SPIFF, ISO/IEC 10918-3:1997)

– JPEG Tiled Image Pyramid (JTIP, ISO/IEC 10918-3:1997)

– JPEG-LS (ISO/IEC 14495)

– JPEG2000-hul: JPEG 2000

– JP2 profile (ISO/IEC 15444-1:2000 / ITU-T Rec. T.800 (2000))

– JPX profile (ISO/IEC 15444-2:2004)

– PDF-hul: Page Description Format (PDF)

– PDF 1.0 through 1.6

– Pre-press data exchange

– PDF/X-1 (ISO 15930-1:2001)

– PDF/X-1a (ISO 15930-4:2003)

– PDF/X-2 (ISO 15390-5:2003)

– PDF/X-3 (ISO 15930-6:2003)

– Tagged PDF

– Linearized PDF

– PDF/A-1 (ISO/DIS 19005-1)

– TIFF-hul: Tagged Image File Format (TIFF) raster images

– TIFF 4.0, 5.0, and 6.0

– Baseline 6.0 Class B, G, P, and R

– Extension Class Y

– TIFF/IT (ISO 12639:2003)

– File types CT, LW, HC, MP, BP, BL, and FP, and conformance levels P1

and P2

– TIFF/EP (ISO 12234-2:2001)

– Exif 2.0, 2.1 (JEIDA-49-1998), and 2.2 (JEITA CP-3451)

– GeoTIFF 1.0

– TIFF-FX (RFC 2301)

– Profiles C, F, J, L, M, and S

– Class F (RFC 2306)

– RFC 1314

– DNG (Adobe Digital Negative)

52

– UTF8-hul: UTF-8 encoded text

– WAVE: Audio for Windows

– PCMWAVEFORMAT

– WAVEFORMATEX

– WAVEFORMATEXTENSION

– Broadcast Wave Format (EBU N22-1997) version 0 and 1

– XML-hul: Extensible Markup Language (XML)

– XML 1.0

In the context of the development of koLibRI, there have been developed two additional

JHOVE modules, that are also included in the present koLibRI release. The first one is for

Disc Images according to ISO9660 (with support for Rock Ridge filename extensions), and

a module for analyzing Postscript files.

The configuration of a JHOVE component is done with help of the JHOVE configuration

file, whose path must be stated in the configuration file of koLibRI. In the current release,

an example file is present within the /config directory and is named jhove.conf. Within

this file, various entries for JHOVE modules exist, which look as followed:

<module>

<class>de.langzeitarchivierung.kopal.jhove.Iso9660Module</class>

</module>

All stated modules are invoked sequential, until a module is found which applies to the

file that is processed at the moment. The order of the modules is absolutely crutial here.

Specialized modules should be placed above more generic ones. An example: An HTML file

consists of a certain sequence of characters, but would be (correctly) recognized as a text

file by the module for ASCII text, if it was invoked prior to the HTML module.

The PostScript module is able to verify a file using the Ghostscript [24] interpreter, if

not configured it just tests for well-formedness. To use this verfication, please configure the

path to the Ghostscript application as follows:

<module>

<class>de.langzeitarchivierung.kopal.jhove.PsModule</class>

<!--param>/usr/local/bin/gs</param-->

<!--param>C:\\Programme\\gs\\gs8.54\\bin\\</param-->

</module>

53

The exact parameters of the Ghostscript call mustbe configured in the PSModule class.

To include the JHOVE functionalities in koLibRI, the JHOVE JAR files jhove.jar,

jhove-handler.jar and jhove-module.jar, within the /lib directory of the koLibRI soft-

ware, are used. These files can easily exchanged by the ones of upcoming maintenance

releases of JHOVE, to profit from possible bugfixes and enhancements. Solely internal,

structural changes within a new version of JHOVE could make possible changes to the

source code of MetadataGenerator necessary.

10.2 WSDL file of the koLibRI Web Service

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions name="kolibri_web_services"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://kopal.langzeitarchivierung.de/ws/wsdl2java/"

targetNamespace="http://kopal.langzeitarchivierung.de/ws/wsdl2java/">

<wsdl:documentation>

/**

* Web Services Description Language (WSDL) file for

* kopal Library for Retrieval and Ingest (koLibRI) Web Services.

*

* Please see the koLibRI documentation and source code for details.

* koLibRI is free software under GNU Public License and sponsored by

* Federal Republic of Germany, Federal Ministry of Education and Research

*

* Copyright: Project kopal http://kopal.langzeitarchivierung.de

* Author: Kadir Karaca Koçer, German National Library

* June 2007

*/

</wsdl:documentation>

<!-- ***** T Y P E S ***** -->

<wsdl:types>

<xsd:schema elementFormDefault="qualified"

targetNamespace="http://kopal.langzeitarchivierung.de/ws/wsdl2java/">

<!-- Type USER -->

<xsd:complexType name="userType">

<xsd:sequence>

54

<xsd:element name="userName" type="xsd:token" />

<xsd:element name="password" type="xsd:token" />

<xsd:element name="institution" type="xsd:int" />

</xsd:sequence>

</xsd:complexType>

<!-- Type Custom XML -->

<xsd:complexType name="customXMLType">

<xsd:sequence>

<xsd:any namespace="##any" processContents="skip" />

</xsd:sequence>

</xsd:complexType>

<!-- Ingest -->

<xsd:element name="getFileFormatListElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="reloadFileFormatListElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Element OBJECT TO INGEST -->

<xsd:element name="ingestDocumentElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="policy" type="xsd:token" />

<xsd:element name="metadata" minOccurs="1" maxOccurs="6" type="tns:customXMLType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ingestSIPElem">

<xsd:complexType>

<xsd:sequence>

55

<xsd:element name="user" type="tns:userType" />

<xsd:element name="urn" type="xsd:token" />

<xsd:element name="linkToSIP" type="xsd:token" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="blockNewIngestRequestsElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="allowIngestRequestsElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getIngestStatisticsElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="resetIngestStatisticsElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- OBJECT TO RETRIEVE -->

<xsd:element name="getMETSElem">

<xsd:complexType>

<xsd:sequence>

56

<xsd:element name="user" type="tns:userType" />

<xsd:element name="objectId" type="xsd:token" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getFileElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="objectId" type="xsd:token" />

<xsd:element name="fileName" type="xsd:token" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getDIPElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="objectId" type="xsd:token" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getDIPExternalElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="objectId" type="xsd:token" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getModifiedSinceElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="modificationdate" type="xsd:dateTime" nillable="true"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getHistoryElem">

57

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="objectId" type="xsd:token" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="blockNewRetrievalRequestsElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="allowRetrievalRequestsElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getRetrievalStatisticsElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="resetRetrievalStatisticsElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="initCacheElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

58

<xsd:element name="rootdir" type="xsd:token" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="eraseOldCacheEntriesElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="timelimit" type="xsd:int" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="deleteCacheElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Change Password -->

<xsd:element name="changePasswordElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="newPassword" type="xsd:token" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Parameters -->

<xsd:element name="setParametersElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="user" type="tns:userType" />

<xsd:element name="diasRetrieverURL" type="xsd:token" minOccurs="0" maxOccurs="1" />

<xsd:element name="diasLoaderURL" type="xsd:token" minOccurs="0" maxOccurs="1" />

<xsd:element name="fileFormatListURL" type="xsd:token" minOccurs="0" maxOccurs="1" />

<xsd:element name="cacheRootDir" type="xsd:token" minOccurs="0" maxOccurs="1" />

<xsd:element name="protocolRetrievalWS" type="xsd:token" minOccurs="0" maxOccurs="1" />

<xsd:element name="urlRetrievalWS" type="xsd:token" minOccurs="0" maxOccurs="1" />

<xsd:element name="tempDir" type="xsd:token" minOccurs="0" maxOccurs="1" />

59

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Type RESPONSE -->

<xsd:element name="responseElem">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="statusCode" type="xsd:int" />

<xsd:element name="responseText" type="xsd:string" />

<xsd:element name="diasId" type="xsd:string" minOccurs="0" maxOccurs="1" />

<xsd:element name="waitTime" type="xsd:int" minOccurs="0" maxOccurs="1" />

<xsd:element name="linkToFile" type="xsd:string" minOccurs="0" maxOccurs="1" />

<xsd:element name="extraInfo" type="xsd:string" minOccurs="0" maxOccurs="1" />

<xsd:element name="errorMessage" type="xsd:string" minOccurs="0" maxOccurs="1" />

<xsd:element name="customdata" type="tns:customXMLType" minOccurs="0" maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</wsdl:types>

<!-- ***** M E S S A G E S ***** -->

<!-- Ingest -->

<wsdl:message name="getFileFormatListMsg">

<wsdl:part name="request" element="tns:getFileFormatListElem" />

</wsdl:message>

<wsdl:message name="reloadFileFormatListMsg">

<wsdl:part name="request" element="tns:reloadFileFormatListElem" />

</wsdl:message>

<wsdl:message name="ingestDocumentMsg">

<wsdl:part name="request" element="tns:ingestDocumentElem" />

</wsdl:message>

<wsdl:message name="ingestSIPMsg">

<wsdl:part name="request" element="tns:ingestSIPElem" />

</wsdl:message>

<wsdl:message name="blockNewIngestRequestsMsg">

<wsdl:part name="request" element="tns:blockNewIngestRequestsElem" />

</wsdl:message>

60

<wsdl:message name="allowIngestRequestsMsg">

<wsdl:part name="request" element="tns:allowIngestRequestsElem" />

</wsdl:message>

<wsdl:message name="getIngestStatisticsMsg">

<wsdl:part name="request" element="tns:getIngestStatisticsElem" />

</wsdl:message>

<wsdl:message name="resetIngestStatisticsMsg">

<wsdl:part name="request" element="tns:resetIngestStatisticsElem" />

</wsdl:message>

<!-- Retrieval -->

<wsdl:message name="getMETSMsg">

<wsdl:part name="request" element="tns:getMETSElem" />

</wsdl:message>

<wsdl:message name="getFileMsg">

<wsdl:part name="request" element="tns:getFileElem" />

</wsdl:message>

<wsdl:message name="getDIPMsg">

<wsdl:part name="request" element="tns:getDIPElem" />

</wsdl:message>

<wsdl:message name="getDIPExternalMsg">

<wsdl:part name="request" element="tns:getDIPExternalElem" />

</wsdl:message>

<wsdl:message name="getModifiedSinceMsg">

<wsdl:part name="request" element="tns:getModifiedSinceElem" />

</wsdl:message>

<wsdl:message name="getHistoryMsg">

<wsdl:part name="request" element="tns:getHistoryElem" />

</wsdl:message>

<wsdl:message name="blockNewRetrievalRequestsMsg">

<wsdl:part name="request" element="tns:blockNewRetrievalRequestsElem" />

</wsdl:message>

<wsdl:message name="allowRetrievalRequestsMsg">

<wsdl:part name="request" element="tns:allowRetrievalRequestsElem" />

61

</wsdl:message>

<wsdl:message name="getRetrievalStatisticsMsg">

<wsdl:part name="request" element="tns:getRetrievalStatisticsElem" />

</wsdl:message>

<wsdl:message name="resetRetrievalStatisticsMsg">

<wsdl:part name="request" element="tns:resetRetrievalStatisticsElem" />

</wsdl:message>

<wsdl:message name="initCacheMsg">

<wsdl:part name="request" element="tns:initCacheElem" />

</wsdl:message>

<wsdl:message name="eraseOldCacheEntriesMsg">

<wsdl:part name="request" element="tns:eraseOldCacheEntriesElem" />

</wsdl:message>

<wsdl:message name="deleteCacheMsg">

<wsdl:part name="request" element="tns:deleteCacheElem" />

</wsdl:message>

<!-- Change password -->

<wsdl:message name="changePasswordMsg">

<wsdl:part name="request" element="tns:changePasswordElem" />

</wsdl:message>

<!-- setParameters -->

<wsdl:message name="setParametersMsg">

<wsdl:part name="request" element="tns:setParametersElem" />

</wsdl:message>

<!-- Response -->

<wsdl:message name="diasResponse">

<wsdl:part name="response" element="tns:responseElem" />

</wsdl:message>

<!-- ***** P O R T S ***** -->

<wsdl:portType name="KolibriServiceSOAP">

<!-- Ingest -->

<wsdl:operation name="getFileFormatList">

<wsdl:input message="tns:getFileFormatListMsg" />

<wsdl:output message="tns:diasResponse" />

62

</wsdl:operation>

<wsdl:operation name="reloadFileFormatList">

<wsdl:input message="tns:reloadFileFormatListMsg" />

<wsdl:output message="tns:diasResponse" />

</wsdl:operation>

<wsdl:operation name="ingestDocument">

<wsdl:input message="tns:ingestDocumentMsg" />

<wsdl:output message="tns:diasResponse" />

</wsdl:operation>

<wsdl:operation name="ingestSIP">

<wsdl:input message="tns:ingestSIPMsg" />

<wsdl:output message="tns:diasResponse" />

</wsdl:operation>

<wsdl:operation name="blockNewIngestRequests">

<wsdl:input message="tns:blockNewIngestRequestsMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="allowIngestRequests">

<wsdl:input message="tns:allowIngestRequestsMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="getIngestStatistics">

<wsdl:input message="tns:getIngestStatisticsMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="resetIngestStatistics">

<wsdl:input message="tns:resetIngestStatisticsMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<!-- Retrieval -->

<wsdl:operation name="getMETS">

<wsdl:input message="tns:getMETSMsg" />

<wsdl:output message="tns:diasResponse" />

</wsdl:operation>

<wsdl:operation name="getFile">

63

<wsdl:input message="tns:getFileMsg" />

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="getDIP">

<wsdl:input message="tns:getDIPMsg" />

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="getDIPExternal">

<wsdl:input message="tns:getDIPExternalMsg" />

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="getModifiedSince">

<wsdl:input message="tns:getModifiedSinceMsg" />

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="getHistory">

<wsdl:input message="tns:getHistoryMsg" />

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="blockNewRetrievalRequests">

<wsdl:input message="tns:blockNewRetrievalRequestsMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="allowRetrievalRequests">

<wsdl:input message="tns:allowRetrievalRequestsMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="getRetrievalStatistics">

<wsdl:input message="tns:getRetrievalStatisticsMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="resetRetrievalStatistics">

<wsdl:input message="tns:resetRetrievalStatisticsMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

64

<wsdl:operation name="initCache">

<wsdl:input message="tns:initCacheMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="eraseOldCacheEntries">

<wsdl:input message="tns:eraseOldCacheEntriesMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<wsdl:operation name="deleteCache">

<wsdl:input message="tns:deleteCacheMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

<!-- Administration -->

<wsdl:operation name="setParameters">

<wsdl:input message="tns:setParametersMsg" />

<wsdl:output message="tns:diasResponse" />

</wsdl:operation>

<wsdl:operation name="changePassword">

<wsdl:input message="tns:changePasswordMsg"/>

<wsdl:output message="tns:diasResponse"/>

</wsdl:operation>

</wsdl:portType>

<!-- ***** B I N D I N G S ***** -->

<wsdl:binding name="bindingKolibri" type="tns:KolibriServiceSOAP">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="getFileFormatList">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getFileFormatList" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="reloadFileFormatList">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#reloadFileFormatList" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

65

<wsdl:operation name="ingestDocument">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#ingestDocument" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="ingestSIP">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#ingestSIP" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="blockNewIngestRequests">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#blockNewIngestRequests" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="allowIngestRequests">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#allowIngestRequests" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getIngestStatistics">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getIngestStatistics" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="resetIngestStatistics">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#resetIngestStatistics" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<!-- Retrieval -->

<wsdl:operation name="getMETS">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getMETS" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getFile">

66

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getFile" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getDIP">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getDIP" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getDIPExternal">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getDIPExternal" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getModifiedSince">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getModifiedSince" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getHistory">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getHistory" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="blockNewRetrievalRequests">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#blockNewRetrievalRequests" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="allowRetrievalRequests">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#allowRetrievalRequests" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal"/></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getRetrievalStatistics">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#getRetrievalStatistics" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

67

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="resetRetrievalStatistics">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#resetRetrievalStatistics" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="initCache">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#initCache" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="eraseOldCacheEntries">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#eraseOldCacheEntries" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="deleteCache">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#deleteCache" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="setParameters">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#setParameters" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

<wsdl:operation name="changePassword">

<soap:operation soapAction="http://bernstein.d-nb.de/kolibri#changePassword" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

</wsdl:binding>

<!-- ***** S E R V I C E S ***** -->

<wsdl:service name="kolibriWebService">

<wsdl:port name="kolibri_ws" binding="tns:bindingKolibri">

68

<soap:address location="http://bernstein.d-nb.de/kolibri/" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

10.3 Direct usage of the interfaces of DIAS

For the direct use of the access and ingest interfaces of DIAS, the commandline tools

DiasAccess and DiasIngest can be used. They are realized through main methods within

the classes retrieval.DiasAccess and ingest.DiasIngest. Knowledge of the DIP and

SIP interface specifications [10] [11] is preconditioned.

It has to be stated here again, that, as for the WorkflowTool also for these tools, the

configuration of a keystore file is typically necessary, as the access to DIAS should be realized

over an encrypted connection. A known hosts file also has to be stated correctly.

DiasIngest

java -jar DiasIngest.jar -h:

-hp, --show-properties Print the system properties and continue.

-a, --address The server address.

-f, --file The file to submit.

-h, --help Print this dialog and exit.

-n, --port The server port.

-p, --password The CMPassword of the CMUser.

-t, --testdias Print dias responses.

-u, --user The submitting CMUser.

DiasAccess

java -jar DiasAccess.jar -h:

-d, --dip-format The requested dip format [zip|tar|tar.gz].

-r, --response-format The requested response format [xml|html].

-x, --ext-id The requested external id.

-i, --int-id The requested internal id.

-hp, --show-properties Print the system properties and continue.

-t, --request-type The type of request [metadata|fullmetadata|asset].

-a, --address The server address.

-f, --file Parse a file as a Dias response and prints it.

-g, --download If no file is specified the file in the dias response is

downloaded and saved in the current directory. Else the

specified file is downloaded.

-h, --help Print this dialog and exit.

69

-l, --list Returns a list of all metadata sets for an external id.

-n, --port The server port.

-p, --print Prints the dias response.

-u, --unsecure Use unsecure access to dias.

10.4 The TIFF Image Metadata Processor

The TiffIMP is useful to validate TIFF images and process their header metadata. Use it

to show, validate and repair the TIFF header metadata. It is using the JHOVE to validate

the TIFF images and to be used via API or as a commandline tool.

TiffIMP as a commandline tool

usage: tiffimp [options]

-h, --help Very surprising: A help message :-)

-r, --rewrite-tiff-header The TIFF header metadata will be rewritten. Please

notice that only the following tasks are able to be

repaired yet:

(a) Word-alignedness of all TIFF ASCII tags.

(b) PageNumber 297 0x0129 set to the valid

TIFF_SHORT count of 2 bytes.

-i, --input-filename <file> The filename of the TIFF image to process.

-o, --output-filename <file> The filename of the corrected TIFF image. Default is

_cor.tif.

-j, --jhove-xml-output Outputs the Jhove XML output using the TIFF-hul module.

-c, --validate-tiff-image Validates the TIFF image according to TIFF specification

compliance using the Jhove

(see http://hul.harvard.edu/jhove).

-s, --show-header-metadata Outputs the TIFF image header metadata tags and their

content to standard out. This is the default option.

-f, --force-overwrite Forces the input image file to be overwritten if header

metadata shall be corrected.

-n, --rewrite-if-not-valid Only rewrites the TIFF header if the image file is not

wellformed or not valid according to the Jhove.

-q, --quiet Run tiffimp in quiet mode.

-v, --verbose Run tiffimp in verbose mode.

10.5 Errorcodes at System.exit

Miscellaneous

(0) Regular ending of the program

70

opal.WorkflowTool, kopal.retrieval.DiasAccess

(1) Commandline and its arguments are not correct

Configuration invalid for WorkflowTool

Configuration invalid for ProcessStarter.

(2) Could not load and initialize process starters. Please check the commandline flag -p

or the DefaultProcessStarter field in the main config file.

(3) Programm was terminated and there was an error while processing some of the lists

elements: Not everything has finished correctly! Please check the logfile.

(9) Could not create logfile.

(12) Database initialization failed.

kopal.processstarter.MonitorHotfolderBase

(6) The given hotfolder path does not exist or is not a directory.

(14) Error processing current File. No file or no directory.

kopal.Policy

(7) Configuration file could not be parsed: Exception while parsing the policy file.

kopal.util.FormatRegistry.java

(10) No backup file for format registry found! Formats can not be identified.

(13) Error parsing the DIAS format registry backup file.

(16) Error accessing the format registry backup file.

kopal.util.kopalXMLParser, kopal.util.HTMLUtils

(11) Parse error in XML file, Parse error in XML string.

kopal.processstarter.MonitorHttpLocationBase

(15) Error accessing URL

71

10.6 Error handling und loglevel

SEVERE The program has to be terminated because of an severe failure. Example: A

configuration file cannot be found.

WARNING Warnings are logged for failures that do not require the termination of the pro-

gram. Example: The processing of a list element is stopped, because the module set

the status ERROR. The next module will be processed.

INFO All information, relevant to the user, are logged within INFO. Example: The start

of a Server, successful parsing of a configuration file, addition of an element to the

ProcessQueue, etc.

FINE FINE loggs all informations which have little relevance to the user and are only

interesting for debugging purposes. Example: Internal messages of the list processing

method WorkflowTool.process().

FINER/FINEST With FINER and FINEST, the finest debug messages can be logged, which are

seldom needed, even for debugging. Example: Messages about notify() and wait()

for the debugging of threads.

ALL/OFF All messages, respectively no messages, are logged.

72

References

[1] DIAS (Digital Information Archiving System)

http://www-5.ibm.com/nl/dias/

[2] Reference Model for an Open Archival Information System (OAIS)

http://ssdoo.gsfc.nasa.gov/nost/isoas/ref model.html

[3] Uniform Resource Name

http://www.persistent-identifier.de

[4] METS (Metadata Encoding & Transmission Standard)

http://www.loc.gov/standards/mets/

[5] LMER (Long-term preservation Metadata for Electronic Resources)

http://d-nb.de/standards/lmer/lmer.htm

[6] kopal – Co-operative Development of a Long-Term Digital Information Archive

http://kopal.langzeitarchivierung.de/

[7] nestor – Network of Expertise in Long-Term Storage of Digital Resources

http://www.langzeitarchivierung.de

[8] JHOVE (JSTOR/Harvard Object Validation Environment)

http://hul.harvard.edu/jhove/

[9] The Free Software Foundation

http://www.fsf.org

[10] DIAS SIP Interface Specification

http://kopal.langzeitarchivierung.de/downloads/kopal DIAS SIP Interface

Specification.pdf

[11] DIAS DIP Interface Specification

http://kopal.langzeitarchivierung.de/downloads/kopal DIAS DIP Interface

Specification.pdf

[12] Hibernate – Relational Persistence for Java

http://www.hibernate.org

[13] SOAP (Simple Object Access Protocol)

http://www.w3.org/TR/soap/

73

http://www-5.ibm.com/nl/dias/
http://ssdoo.gsfc.nasa.gov/nost/isoas/ref_model.html
http://www.persistent-identifier.de
http://www.loc.gov/standards/mets/
http://d-nb.de/standards/lmer/lmer.htm
http://kopal.langzeitarchivierung.de/
http://www.langzeitarchivierung.de
http://hul.harvard.edu/jhove/
http://www.fsf.org
http://kopal.langzeitarchivierung.de/downloads/kopal_DIAS_SIP_Interface_Specification.pdf
http://kopal.langzeitarchivierung.de/downloads/kopal_DIAS_SIP_Interface_Specification.pdf
http://kopal.langzeitarchivierung.de/downloads/kopal_DIAS_DIP_Interface_Specification.pdf
http://kopal.langzeitarchivierung.de/downloads/kopal_DIAS_DIP_Interface_Specification.pdf
http://www.hibernate.org
http://www.w3.org/TR/soap/

[14] AXIS2

http://ws.apache.org/axis2/

[15] Apache Tomcat

http://tomcat.apache.org

[16] Dublin Core Metadata Initiative

http://dublincore.org

[17] WSDL (Web Service Description Language)

http://www.w3.org/TR/wsdl/

[18] German National Library

http://www.d-nb.de/eng/

[19] Goettingen State and University Library

http://www.sub.uni-goettingen.de

[20] IBM Deutschland GmbH

http://www.ibm.com/de/

[21] Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

http://www.gwdg.de

[22] Universal Object Format – An archiving and exchange format for digital objects

http://kopal.langzeitarchivierung.de/downloads/kopal Universelles

Objektformat.pdf

[23] Apache XMLBeans

http://xmlbeans.apache.org/

[24] Ghostscript

http://www.ghostscript.com/awki

[25] Common Query Language (CQL)

http://www.loc.gov/standards/sru/cql/

[26] Global Digital Format Registry (GDFR)

http://hul.harvard.edu/gdfr/

[27] PRONOM – The Online Registry of Technical Information

http://www.nationalarchives.gov.uk/pronom/

74

http://ws.apache.org/axis2/
http://tomcat.apache.org
http://dublincore.org
http://www.w3.org/TR/wsdl/
http://www.d-nb.de/eng/
http://www.sub.uni-goettingen.de
http://www.ibm.com/de/
http://www.gwdg.de
http://kopal.langzeitarchivierung.de/downloads/kopal_Universelles_Objektformat.pdf
http://kopal.langzeitarchivierung.de/downloads/kopal_Universelles_Objektformat.pdf
http://xmlbeans.apache.org/
http://www.ghostscript.com/awki
http://www.loc.gov/standards/sru/cql/
http://hul.harvard.edu/gdfr/
http://www.nationalarchives.gov.uk/pronom/

	kopal Library of Retrieval and Ingest -- an overview
	Functionality
	Project scale
	Distribution

	Installation and configuration
	Requirements
	Installation
	Configuration of koLibRI

	Using koLibRI for the ingest workflow
	Overview over more ActionModules and ProcessStarters
	Get started! -- Information about the example configuration

	Using koLibRI for retrieval
	The Migration Manager
	Description
	Design
	Usage
	Class Descriptions an Extensions

	The koLibRI database
	Installation
	Design of the database schema

	Customized koLibRI extensions
	The Structure of koLibRI
	Configuring classes
	Metadata formats

	Implementation of the DIAS administration and search interfaces
	koLibRI as a Web Service
	Introduction
	Installation
	Configuration
	Starting up
	How Ingest works
	How Retrieval works
	Organisation of the cache
	Available operations
	Information for programmers

	Appendix
	The use of JHOVE in koLibRI
	WSDL file of the koLibRI Web Service
	Direct usage of the interfaces of DIAS
	The TIFF Image Metadata Processor
	Errorcodes at System.exit
	Error handling und loglevel

